Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Study on the microbial community in earthworm and soil under cadmium stress based on contour line analysis.

Identifieur interne : 000361 ( Main/Exploration ); précédent : 000360; suivant : 000362

Study on the microbial community in earthworm and soil under cadmium stress based on contour line analysis.

Auteurs : Yucui Ning [République populaire de Chine] ; Haoran Zhou [République populaire de Chine] ; Dongxing Zhou [République populaire de Chine]

Source :

RBID : pubmed:31115813

Descripteurs français

English descriptors

Abstract

Cadmium (Cd) contamination in soil has become the focus of widespread concern in society today. In this paper, with Eisenia fetida as research subjects, an indoor simulation experiment was conducted. A BIOLOG microplate technique was used to determine the carbon source (single-carbon) utilization of the microbial communities in the contaminated soil and earthworms under Cd stress. Contour line analysis was used for the first time to study the difference of carbon source metabolism in microbial communities. And the effects of Cd stress on the functional diversity of the microbial communities and the detoxification mechanism in earthworms were researched. With two test groups, a short-term test and the long-term test were performed. The former test lasted for 10 days, with the removal of an earthworm every day for analysis; the latter test lasted for 30 days, with the removal of an earthworm every 10 days. The Cd2+ concentration was set at 0, 50, 100, 125, 250, or 500 mg kg-1 dry weight, and 10 earthworms were inoculated in each concentration treatment. The earthworm homogenate and soil extracts were used to determine the carbon source utilization of the microbial communities. The results show that Cd stress changed the functional diversity of the microbial communities in the soil and earthworms. With the extension of stress time and the increase of stress concentration, earthworms will adjust their own physiological functions (including the microbial community structure and stress mechanism in the body) and regulate the microbial community structure in the external environment to obtain the necessary substances for growth. In addition, 2-hydroxybenzoic acid, γ-hydroxybutyric acid, glutamyl-L-glutamic acid, α-butyric acid, threonine, and α-cyclodextrin were important carbon sources for the earthworms to maintain their normal physiological metabolism under Cd stress. This study confirms that changes in microbial communities can be used to reveal the detoxification mechanisms of earthworm under heavy metal stress.

DOI: 10.1007/s11356-019-05207-w
PubMed: 31115813


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Study on the microbial community in earthworm and soil under cadmium stress based on contour line analysis.</title>
<author>
<name sortKey="Ning, Yucui" sort="Ning, Yucui" uniqKey="Ning Y" first="Yucui" last="Ning">Yucui Ning</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030</wicri:regionArea>
<wicri:noRegion>150030</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Haoran" sort="Zhou, Haoran" uniqKey="Zhou H" first="Haoran" last="Zhou">Haoran Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018</wicri:regionArea>
<wicri:noRegion>271018</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Dongxing" sort="Zhou, Dongxing" uniqKey="Zhou D" first="Dongxing" last="Zhou">Dongxing Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China. zhboshi@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030</wicri:regionArea>
<wicri:noRegion>150030</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31115813</idno>
<idno type="pmid">31115813</idno>
<idno type="doi">10.1007/s11356-019-05207-w</idno>
<idno type="wicri:Area/Main/Corpus">000451</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000451</idno>
<idno type="wicri:Area/Main/Curation">000451</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000451</idno>
<idno type="wicri:Area/Main/Exploration">000451</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Study on the microbial community in earthworm and soil under cadmium stress based on contour line analysis.</title>
<author>
<name sortKey="Ning, Yucui" sort="Ning, Yucui" uniqKey="Ning Y" first="Yucui" last="Ning">Yucui Ning</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030</wicri:regionArea>
<wicri:noRegion>150030</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Haoran" sort="Zhou, Haoran" uniqKey="Zhou H" first="Haoran" last="Zhou">Haoran Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018</wicri:regionArea>
<wicri:noRegion>271018</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Dongxing" sort="Zhou, Dongxing" uniqKey="Zhou D" first="Dongxing" last="Zhou">Dongxing Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China. zhboshi@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030</wicri:regionArea>
<wicri:noRegion>150030</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cadmium (toxicity)</term>
<term>Carbon (analysis)</term>
<term>Carbon (metabolism)</term>
<term>Microbiota (drug effects)</term>
<term>Microbiota (physiology)</term>
<term>Oligochaeta (drug effects)</term>
<term>Oligochaeta (microbiology)</term>
<term>Oligochaeta (physiology)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Soil Pollutants (toxicity)</term>
<term>Stress, Physiological (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cadmium (toxicité)</term>
<term>Carbone (analyse)</term>
<term>Carbone (métabolisme)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Microbiote (effets des médicaments et des substances chimiques)</term>
<term>Microbiote (physiologie)</term>
<term>Oligochaeta (effets des médicaments et des substances chimiques)</term>
<term>Oligochaeta (microbiologie)</term>
<term>Oligochaeta (physiologie)</term>
<term>Polluants du sol (toxicité)</term>
<term>Sol (composition chimique)</term>
<term>Stress physiologique (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Cadmium</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Microbiota</term>
<term>Oligochaeta</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Microbiote</term>
<term>Oligochaeta</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Oligochaeta</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Oligochaeta</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Microbiote</term>
<term>Oligochaeta</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Microbiota</term>
<term>Oligochaeta</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Cadmium</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Microbiologie du sol</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cadmium (Cd) contamination in soil has become the focus of widespread concern in society today. In this paper, with Eisenia fetida as research subjects, an indoor simulation experiment was conducted. A BIOLOG microplate technique was used to determine the carbon source (single-carbon) utilization of the microbial communities in the contaminated soil and earthworms under Cd stress. Contour line analysis was used for the first time to study the difference of carbon source metabolism in microbial communities. And the effects of Cd stress on the functional diversity of the microbial communities and the detoxification mechanism in earthworms were researched. With two test groups, a short-term test and the long-term test were performed. The former test lasted for 10 days, with the removal of an earthworm every day for analysis; the latter test lasted for 30 days, with the removal of an earthworm every 10 days. The Cd
<sup>2+</sup>
concentration was set at 0, 50, 100, 125, 250, or 500 mg kg
<sup>-1</sup>
dry weight, and 10 earthworms were inoculated in each concentration treatment. The earthworm homogenate and soil extracts were used to determine the carbon source utilization of the microbial communities. The results show that Cd stress changed the functional diversity of the microbial communities in the soil and earthworms. With the extension of stress time and the increase of stress concentration, earthworms will adjust their own physiological functions (including the microbial community structure and stress mechanism in the body) and regulate the microbial community structure in the external environment to obtain the necessary substances for growth. In addition, 2-hydroxybenzoic acid, γ-hydroxybutyric acid, glutamyl-L-glutamic acid, α-butyric acid, threonine, and α-cyclodextrin were important carbon sources for the earthworms to maintain their normal physiological metabolism under Cd stress. This study confirms that changes in microbial communities can be used to reveal the detoxification mechanisms of earthworm under heavy metal stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31115813</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Study on the microbial community in earthworm and soil under cadmium stress based on contour line analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>20989-21000</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-019-05207-w</ELocationID>
<Abstract>
<AbstractText>Cadmium (Cd) contamination in soil has become the focus of widespread concern in society today. In this paper, with Eisenia fetida as research subjects, an indoor simulation experiment was conducted. A BIOLOG microplate technique was used to determine the carbon source (single-carbon) utilization of the microbial communities in the contaminated soil and earthworms under Cd stress. Contour line analysis was used for the first time to study the difference of carbon source metabolism in microbial communities. And the effects of Cd stress on the functional diversity of the microbial communities and the detoxification mechanism in earthworms were researched. With two test groups, a short-term test and the long-term test were performed. The former test lasted for 10 days, with the removal of an earthworm every day for analysis; the latter test lasted for 30 days, with the removal of an earthworm every 10 days. The Cd
<sup>2+</sup>
concentration was set at 0, 50, 100, 125, 250, or 500 mg kg
<sup>-1</sup>
dry weight, and 10 earthworms were inoculated in each concentration treatment. The earthworm homogenate and soil extracts were used to determine the carbon source utilization of the microbial communities. The results show that Cd stress changed the functional diversity of the microbial communities in the soil and earthworms. With the extension of stress time and the increase of stress concentration, earthworms will adjust their own physiological functions (including the microbial community structure and stress mechanism in the body) and regulate the microbial community structure in the external environment to obtain the necessary substances for growth. In addition, 2-hydroxybenzoic acid, γ-hydroxybutyric acid, glutamyl-L-glutamic acid, α-butyric acid, threonine, and α-cyclodextrin were important carbon sources for the earthworms to maintain their normal physiological metabolism under Cd stress. This study confirms that changes in microbial communities can be used to reveal the detoxification mechanisms of earthworm under heavy metal stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ning</LastName>
<ForeName>Yucui</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Haoran</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Dongxing</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6173-5049</Identifier>
<AffiliationInfo>
<Affiliation>College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China. zhboshi@163.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2018YFD0300106-3</GrantID>
<Agency>National Key R&D Program of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="N">Microbiota</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009835" MajorTopicYN="N">Oligochaeta</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cd stress</Keyword>
<Keyword MajorTopicYN="N">Contour line analysis</Keyword>
<Keyword MajorTopicYN="N">Eisenia fetida</Keyword>
<Keyword MajorTopicYN="N">Microbial community</Keyword>
<Keyword MajorTopicYN="N">Single carbon resource</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31115813</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-019-05207-w</ArticleId>
<ArticleId IdType="pii">10.1007/s11356-019-05207-w</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chemosphere. 2001 Jan;42(3):251-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11100924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):2129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Jun;164(6):728-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2007;61:169-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci (China). 2007;19(7):854-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17966874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jun;31(6):697-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2010 Oct 1;47(3):410-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20603143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2010 Oct 15;182(1-3):295-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20621418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 Mar;5(3):473-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20740027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2011 Sep 27;346(13):1721-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21718974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2013 Jan 2;91(1):322-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23044139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2013 Oct 1;463-464:530-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2013 Oct;61:359-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23921207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 2014 Mar;92(3):285-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24233261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2014 May;103:9-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24561241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2014 Aug;166:96-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24907568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2014 Jul 15;276:353-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24910912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ying Yong Sheng Tai Xue Bao. 2014 May;25(5):1499-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25129954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ying Yong Sheng Tai Xue Bao. 2014 Jul;25(7):2011-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25345052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2015 Feb;112:186-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25463870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2015 Oct 15;456:42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26092115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ying Yong Sheng Tai Xue Bao. 2015 Oct;26(10):3066-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26995915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2016 Aug;23(15):15418-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27117148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2016 Aug;157:181-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27219294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jul 26;6:30402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27456167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2016 Nov;23(21):21883-21893</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27528521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicology. 2017 Apr;26(3):360-369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28130694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2017 May;139:254-262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28160703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2018 Feb;25(5):4268-4278</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29178017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhongguo Zhong Yao Za Zhi. 2017 Dec;42(24):4756-4761</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29493143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2018 Oct;266:267-274</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29982047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2018 Nov;25(32):32358-32372</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30229493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2019 Feb;216:157-167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30366269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 1978 Jun;30(6):1305-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">670973</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Ning, Yucui" sort="Ning, Yucui" uniqKey="Ning Y" first="Yucui" last="Ning">Yucui Ning</name>
</noRegion>
<name sortKey="Zhou, Dongxing" sort="Zhou, Dongxing" uniqKey="Zhou D" first="Dongxing" last="Zhou">Dongxing Zhou</name>
<name sortKey="Zhou, Haoran" sort="Zhou, Haoran" uniqKey="Zhou H" first="Haoran" last="Zhou">Haoran Zhou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000361 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000361 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31115813
   |texte=   Study on the microbial community in earthworm and soil under cadmium stress based on contour line analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31115813" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020